SOME THOUGHTS ON MODELS OF REALITY AND ON AI

DEPTH OF ANALYSIS

The depth of analysis that may be applied in the construction of any model of the world based on perceived phenomena is theoretically unbounded, with each further level of depth offering the promise of greater accuracy and utility, though information management issues (increasing complexity and sophistication can cost more in time, effort, and physical resources) can provide practical limits. Also, increases in the depth of analyses may lead to a series of models that appear to be converging at a point, making further increases in depth imprudent.   A related observation is that increases in depth, along with increases in complexity generally, often have declining marginal utility.

The precision, or level of detail, of a model used in analysis must be chosen carefully if the model is to be useful and helpful in predicting future phenomena.  A higher level of precision is obtainable and useful for a model of a very limited set of phenomena, e.g., the interactions of atoms of type A or B.  For models of broad sets of phenomena, such as models developed for social interactions, a relatively high level of precision is unmanageable, as the number of variables and the complexity of interactions that would be required for precision would overwhelm the information processing capabilities of the observer.   So the observer should be flexible in choosing levels of detail and precision for a model based on the complexity of the phenomena to be modeled.  Also, for such complex phenomena, different observers will have different measurements and data and differing analyses, so their models will diverge as the depth is increased, making wide agreement and the development of a common accepted model virtually impossible, and thus reducing the utility of adding depth.

A sophisticated model, one of some depth, may use the idea of feedback loops.  Considerations of information management and trends toward convergence apply to any analysis, including those incorporating feedback loops in the construction of a model, so prudence dictates that the construction of feedback loop representations be sensitive to resource-cost concerns.

 

DIFFERENT WORLDS

Walter Lippman, back in 1922, in his well-regarded work “Public Opinion,” described human society as composed of individuals who generally fail to understand that they think in different worlds though they live in the same world.  He made the claim that each world individuals construct for themselves is a simplified version of the actual world, often using flawed stereotypes of complex phenomena.
Maybe a better way to approach these issues is to observe that each individual constructs their own model of the world based on their own experiences, and that these models are limited for three reasons.  First, an individual has limited capacity to remember, to imagine, and to analyze the data from the environment that the individual senses.  Second, each individual is in a unique position in space/time, and so each individual is going to be exposed to different samples of the world (the sensing of phenomena internal to the individual’s body is especially going to diverge from the experience of others).  Third, the individual has to prioritize use of energy and time resources, and so the individual will rationally simplify models to make them more useful or efficient.

 

FEEDBACK LOOPS

Simple models of the world we find ourselves in, the “out there” that produces our sensations and perceptions, represent objects and motion.  More sophisticated models may incorporate ideas about forces and fields and various other less obvious aspects of our physical reality.  For living systems, which generally behave in self-sustaining manner, feedback loops are a key component.  The biological system must respond to feedback from the environment in order to maintain its life process, grow, and reproduce.  These feedback loops can be simple chemical processes or can be sophisticated neural circuits that are connected through inter-individual forms of communication and involve the brains of many members of a human group.  When formulating models of groups of social animals, and particularly humans, the use of feedback loops is essential to capture crucial elements of the social process.

THOUGHT CIRCUITS

Human consciousness can well be described as a circuit of electrical activity.  Thoughts of the self may be simply characterized as a circuit flowing through its usual pathways and thereby creating a model, or mini-circuit, that represents the entire circuit.  The circuit is confined to the brain in the simplest sense and leads to the characterization of the brain as the source of the “self.”

However, circuits that flow through a brain may flow through other brains, particularly in social animals.  A form of collective circuit is formed.  An individual may form many such circuits in a society of individuals just as the individual may belong to many social circles.  Correspondingly, a brain may generate many circuits, some of which are primarily contained within the brain, some of which are primarily social circuits (flow through a group of individuals of the same species), and some of which flow through the brain but are not totally contained within a society of individuals (e.g. interspecies relationships).  There may also be relationships involving the non-animal universe, e.g. a circuit involved in “communing with nature.”

In the near-future for human society, a new type of circuit involving the non-animal universe may become common, a human-computer circuit that derives from a relationship between a human and a “thinking” computer, i.e. one that can engage in creative thought.  The “society” formed may become extremely dangerous with regard to the safety and integrity of traditional human society.

When an individual becomes connected to something, or forms a relationship with something or someone, it actually is forming a circuit.  Circuits that become strong and vital are those which are constantly replenished with energy, i.e. rejuvenated.  Rejuvenation takes place through the experience of pleasure, possibly even the pleasure of relieving or escaping pain or fear.

Dangerous circuits form when a circuit is inconsistent with the circuits involved in survival.  Sometimes pleasure may result from activities inconsistent with survival (e.g. drug use) and dangerous, problematic circuits are formed and reinforced.  Breaking those circuits can be especially difficult and the best approach is to keep them from forming.

 

PROGRESS IN KNOWLEDGE

Human progress in understanding the universe, in constructing models of the universe that provide some predictability of future phenomena and of reactions to proposed actions, has resulted primarily from fields of study where certainty and agreement, or as much certainty and agreement as healthy human minds are capable of, is attainable. These include the fields of mathematics, with certainty established through rigorous proofs, which can be verified by others, and those of the hard sciences, where rigorous scientific experimentation is possible and can be replicated by others. Hypotheses can be verified and theories can be supported or invalidated, and the progress of human knowledge marches on.

Conversely, in fields where rigorous proof is not possible, and objective measurements of all significant variables are difficult to obtain, including in the social sciences as well as in the humanities, speculation is rampant and the dominant theories are those supported by social institutions and powerful social forces, not those verified by scientific experiment and in depth rigorous analysis of agreed-upon data. So progress is slow if it occurs at all.

Tragically, the most important issues that any society must grapple with usually involve consideration of models based on social science or studies in the humanities. Mathematics and the hard sciences are generally only directly applicable to isolated specific problems and not to general questions that involve critical questions of social policy. Great expertise is developed with regard to these specific problem areas, and that is often used to generate great power that may apply in conflicts that determine societal direction. But the expertise, or the power that follows from it, does not confer on the holder of same the greater wisdom in determining societal direction, as the expertise is far removed from the questions related to the large social issues. Expertise in specific problem areas does not translate into expertise in global issues.

 

COMPETING MODELS

Models of the physical reality are not equal. Though each individual will construct a model for that individual, when those individuals interact they create a shared model, and within a society there can be developed an accepted model, that becomes to some degree universal. However, it is critical that competing models still exist, for no model is complete or flawless and competing models can help provide improvements.
.
Improvement in models is made more easily where rigorous scientific experimentation allows for the winnowing out of inferior models, in the form of hypotheses or theories, and the establishment of superior ones. In areas of study where rigorous experimentation is not possible, such as in the social sciences, improvement in models is much more difficult to come by, but scoring models according to their relative success in predicting outcomes can still provide useful information for analysis and improvement.
.
In the social science of economics, the improvement in models is even more difficult as powerful economic interests may play a significant role in promotion or defending a model even when the evidence, if widely known, would tend to undermine it.

 

INTERPRETATIONS

There are an infinite number of ways to interpret any phenomenon, though human individuals are inclined to, and probably predisposed to, search for interpretations that bring pleasure or avoid pain, i.e., those that provide the most positive feedback.  This propensity may have little utility with regard to survival and individual welfare if interpretations are chosen only to provide immediate pleasure by helping to create new models of the world in which the subject’s social status, or other state related to an increased rate of receiving future rewards, is improved.  This inefficiently allocates mental resources to providing pleasure without contributing to altering the environment to provide more positive feedback in the future.  On the other hand, interpretations that are chosen with the goal of creating more accurate models of the universe to provide more moderate pleasure through creation of anticipation of future rewards, have great utility.

The discipline to control the impulse, inefficient and harmful as it is, to provide immediate pleasure can be developed by associating with pain the act of submitting to that impulse, which can provide a barrier to following that impulse.

 

AI & TECHNOLOGY

The inherent difficulty in studies in the subfield of Artificial Intelligence (AI) within the field of Computer Science (CS) derives from the nature of problem-solving in CS, involving algorithmic approaches to problems and the use of applied mathematics to maximize the precision of the solutions, which is somewhat incongruous with the requirements for AI. In CS, problems are posed and solutions are designed with some level of mathematical rigor and precision (necessary for translation into computer code). The difficulty is that progress in AI requires the development of a useful model of the universe and an approach to determining how some specific piece of information or some specific task affects or should affect the model. This analysis becomes problematic as generalizations, which involve a relatively low level of detail, are required to manage the model because of its scope (maintaining the same level of detail as that used for the specific problem quickly becomes an unmanageable task with the virtually unbounded information streams associated with a model of the universe). Such generalizations at such a low level of detail are necessarily imprecise and rough and not easily represented in a manner that makes them amenable to solution by precise algorithmic methods. So means must be developed to precisely, or accurately, transform diverse, complex, and numerous pieces of data into simple generalizations. This points to the implementation of statistical methods, though assumptions must always be made about the data and about how they should impact the model. Making these assumptions is an inexact, imprecise, and rough process, full of risks both known and unknown.

These difficulties parallel to some extent the general difficulties of applying the precise and specific rules derived from the studies of the hard sciences to general problems. More and more sophisticated methods are developed as precise and dependable knowledge flows from the hard sciences which allow for the creation of increasingly sophisticated and powerful technologies, but there is no corresponding increase in knowledge of how these developments relate to, or fit in with, more general concerns about the human environment and human welfare. As the power grows, the danger grows, but the ability to control the power or the danger lags further and further behind.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s